Teflon films for chemically-inert microfluidic valves and pumps.

نویسندگان

  • William H Grover
  • Marcio G von Muhlen
  • Scott R Manalis
چکیده

We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface.

In this paper we present a reusable, chemically inert, multichannel Chip-to-World-Interface (CWI). The concept of this interface is based on a force fit connection similar to the hollow screw connectors known from high-performance liquid chromatography (HPLC) instruments. It allows contamination free connection of up to 100 thermoplastic tubes to microfluidic chips made from various materials e...

متن کامل

Balloon Pump with Floating Valves for Portable Liquid Delivery

In this paper, we propose a balloon pump with floating valves to control the discharge flow rates of sample solutions. Because the floating valves were made from a photoreactive resin, the shapes of the floating valves could be controlled by employing different exposure patterns without any change in the pump configurations. Owing to the simple preparation process of the pump, we succeeded in c...

متن کامل

Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids wit...

متن کامل

Whole-Teflon microfluidic chips.

Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluid...

متن کامل

Monolithic microfabricated valves and pumps by multilayer soft lithography.

Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2008